Y=-16x^2+32x+64

Simple and best practice solution for Y=-16x^2+32x+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16x^2+32x+64 equation:



=-16Y^2+32Y+64
We move all terms to the left:
-(-16Y^2+32Y+64)=0
We get rid of parentheses
16Y^2-32Y-64=0
a = 16; b = -32; c = -64;
Δ = b2-4ac
Δ = -322-4·16·(-64)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32\sqrt{5}}{2*16}=\frac{32-32\sqrt{5}}{32} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32\sqrt{5}}{2*16}=\frac{32+32\sqrt{5}}{32} $

See similar equations:

| k+10=−9 | | 3+5x=5(x+2)−7 | | n+-7=22 | | -5x/10=5 | | 10x-4+6x+12=180 | | -8.6f+4.94=-8f+7.82 | | 90+(3x+9)+(2x+11)=180 | | 183.6=x+54 | | 14=9+w | | 1/2(x+2)=1/3(2x-1) | | 5u-6=6u-10-6 | | 80=(19x+2)+(-2+21x)=180 | | 6=r–2 | | 1/2x-5=2/3x=7/6x+4 | | 1.4l-45.8=77.1-0. | | 30x=660 | | 9x-3x+5=29 | | 8(b-1)+9=4-(b-5) | | v–4=2 | | -9.39-9.6w=2.7w+6.13+7.85 | | 20=6.8(15-6g) | | a=15;a–20 | | 6-2m=2m+2 | | q+10=15 | | 3x+50+140=180 | | 0=t^2-10 | | 16x-12=8x+6 | | -8p+8=-10-3p-8p | | 12/180=100/x | | -8-6k=-3k+10 | | 12/180=x/100 | | 98=(6x+8)+(5x+2)=180 |

Equations solver categories